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1 INTRODUCTION

Over the past decade, the field of Artificial Intelligence (AI) has experienced unprecedented growth, marked by
remarkable achievements like ChatGPT, a product leveraging generative pre-trained transformers, which has expanded
the horizons of AI capabilities, edging us closer to the theoretical concept of Artificial General Intelligence (AGI) – a
machine endowed with human-like cognitive capacities. Nevertheless, this surge in advancement has raised significant
apprehensions regarding the concentration of AI development.

The ascent of AI has prompted concerns about its centralization. Currently, AI research predominantly orbits a
handful of formidable corporations and governmental bodies. These entities wield extensive training data, expensive
computational resources, and substantial financial backing to drive pioneering research. While this centralization
undeniably propels progress, it also presents pivotal challenges[23]:

• Monopolization: The concentration of power among a few dominant entities, endowed with extensive data and
computational resources, poses a threat to competition. This concentration can stifle innovation by limiting the
diversity of perspectives and methodologies crucial for progress. Consequently, there’s a risk of homogenizing
AI development, potentially hindering breakthroughs in pivotal domains.

• Privacy and Security Risks: Centralized servers provoke significant anxieties regarding data privacy. The con-
solidation of power may incentivize the creation of AI models that prioritize the interests of those in control,
potentially infringing upon individual liberties.

• Lack of transparency and accountability: While regulatory frameworks like GDPR[46] exist to safeguard data
privacy, there’s a notable absence of external mechanisms to verify how companies internally utilize data and
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train models. This lack of transparency and accountability undermines trust in centralized AI systems and raises
concerns about ethical data practices.

• Incentive Mechanisms: Enterprises that reap the benefits of AI often fail to share these rewards with the users
who contribute data and provide evaluation feedback. Moreover, current large language models (LLMs) consume
vast amounts of data [169], potentially including high-quality public data without adequate compensation for
contributors. Introducing incentive mechanisms to encourage greater participation in data sharing and evaluation
processes is essential for enhancing model performance and fostering a more equitable AI ecosystem.

In response to these concerns, there is a burgeoning movement towards decentralized AI (DeAI) development. This
paradigm advocates for the dispersion of control and resources across a broader network of participants, fostering
enhanced transparency, accountability, and inclusivity. DeAI endeavors to construct AI models within a decentralized
infrastructure, where data providers and computing resources are distributed. Importantly, it aims to ensure the data
privacy, and model security during training and inference processes.

While decentralized AI is still in its infancy, it holds immense potential for shaping the future of the field. By nurturing
a more democratic and fair approach to AI development, we can ensure that this transformative technology serves the
betterment of all humanity.

1.1 Motivation

With the advent of groundbreaking models like ChatGPT and Sora, the AI landscape has undergone significant evolution,
ushering in a new era fraught with novel challenges that warrant careful consideration. Intriguingly, existing reviews
and surveys often narrowly equate Decentralized AI (DeAI) with blockchain applications in AI, or delve into specific
technical approaches, such as cryptography and privacy preservation, within the realm of deep learning. However,
these reviews frequently overlook the nuanced techniques, and lack focus on solutions to challenges posed by deAI.

DeAI intersects deep learning, cryptography, and network technologies, yet researchers within each domain often
lack insight into cutting edge progress from others. Hence, this review aims to bridge these knowledge gaps and
disseminate the latest advancements in this arena. Acknowledging the rapid pace of innovation, we concede our
inability to cover all recent developments and instead encourage readers to explore the continually updated resource at
https://deai.gitbook.io. Contributions to this collaborative effort are warmly welcomed.

The contributions of this review can be distilled as follows:

• Introducing a systematic definition of DeAI, a novel contribution to the field.
• Identifying and discussing the emerging DeAI challenges posed by large-scale models.
• Conducting a comprehensive survey of these challenges, exploring various methodologies and their analyses
and comparisons.

• Investigating the problem from multifaceted perspectives, encompassing deep learning, cryptography, network
and economics domains.

1.2 Article Organization

In this survey of decentralized AI (DeAI), we structure our discussion as follows:
In Section 2, we present a comprehensive definition of DeAI and delineate the resolved and outstanding challenges

within the field.
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Section 3 delves into the privacy risks inherent in DeAI, particularly their implications for data providers. We survey
various cryptographic and privacy-preserving machine learning approaches aimed at mitigating these risks.

In Section 4, we scrutinize different types of attacks targeting model training processes, which pose security threats
to trainers. We comprehensively review defensive techniques against these attacks.

Section 5 focuses on exploring mechanisms to incentivize DeAI participants to contribute high-quality data and
services, while thwarting cheating behavior.

Section 6 investigates techniques for verifying computations to prevent malicious actors from yielding fake results,
thereby safeguarding the integrity of DeAI processes.

Lastly, in Section 7, we address the challenges posed to network bandwidth by large-scale models, offering insights
into potential solutions.

1.3 General Terminology

Throughout this paper, we employ numerous acronyms for the sake of brevity and convention. Table 1 provides a
comprehensive list of these acronyms, aiding in the clear representation of concepts, models, methods, and algorithms
discussed.

Table 1. List of acronyms

Acronym Explanation
AI Artificial Intelligence
DeAI Decentralized Artificial Intelligence
LLM Large Language Model
PII Personally Identifiable Information
FL Federated Learning
DP Differential Privacy
MPC Multi-Party Computation
TEE Trusted Execution Environment
FHE Fully Homomorphic Encryption
ZKP Zero-Knowledge Proof
MIA Membership Inference Attack
PEFT Parameter Efficient Fine Tuning

2 PROBLEM DEFINITION

Figure 1 illustrates a simplified yet characteristic workflow of the deep learning model paradigm:

(1) Data providers contribute data for training purposes.
(2) Model training scripts are executed on computing resources.
(3) Upon model convergence, the model is stored and hosted at a specified location.
(4) Users submit input requests to utilize the model.
(5) The model host conducts model inference on computing resources and delivers the results to the user.

In a centralized AI scenario, the entity conducting the model training task typically centralizes and stores all data
internally, thereby assuming responsibility for data storage, infrastructure procurement (either through ownership or
rental), as well as model training, hosting, and inference functionalities. This centralized model not only consolidates
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Fig. 1. Workflow of Deep Learning Paradigm

control but also raises concerns regarding data privacy and security, as well as potential biases inherent in the centralized
decision-making process.

Contrastingly, in a fully decentralized AI setting, each of these participants—data providers, model trainers, and
infrastructure owners—operates within distinct entities. This decentralized structure aims to distribute control and
responsibility across a broader network of stakeholders, thereby mitigating the risks associated with centralization,
such as monopolization and single points of failure. However, the lack of trust between parties in a decentralized
environment poses its own set of challenges, including the need for robust mechanisms for data sharing, model training,
and inference coordination while ensuring data privacy, security, and fairness.

This shift towards decentralization in AI research is motivated by the desire to foster transparency, accountability,
and inclusivity in the development and deployment of AI systems. By distributing control and ownership of AI
resources among diverse stakeholders, decentralized AI endeavors to democratize access to AI technologies and
empower individuals and communities to actively participate in shaping the future of AI. Nonetheless, realizing the full
potential of decentralized AI requires overcoming various technical, organizational, and regulatory challenges, as well
as establishing trust and collaboration among stakeholders.

2.1 Data Providers

Current LLMs (e.g., GPT-4[3], Gemini[166], Llama[169]) are trained with data of trillions of tokens, indicating the
imminent depletion of high-quality data [176]. To enhance model capability, incorporating more high-quality private
data is imperative. From the perspective of data providers, concerns arise regarding privacy disclosure via data sharing,
as data is utilized by the model training task and executed on computing powers. Importantly, models trained on
their data should not disclose privacy, such as personally identifiable information (PII). Furthermore, incentivizing
Manuscript submitted to ACM
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mechanisms are crucial to encourage data providers to produce more high-quality data. However, the current model
training process lacks incentivization, failing to reward high-quality data via model monetization.

2.2 Model Training Task

The model training task trains data on computing power to obtain a model checkpoint, storing it on a model host
platform. In a centralized solution, model training tasks can select relevant data for their use case, clean, and deduplicate
data to enhance quality. In a decentralized framework, ensuring data relevance and quality without disclosing content
poses challenges, particularly as data providers may be incentivized to produce more data. Moreover, data providers
may conceal harmful information within data, potentially polluting the model. Additionally, as computing power is not
owned by the model training task, decentralized AI frameworks may source computing power from crowd-sourcing,
complicating the provision of stable and reliable computing services. Decentralized computing power necessitates
mechanisms to prove computation on given data, ensuring system error tolerance and low latency.

2.3 Computing Power

Decentralized computing power entails computing nodes owned by different entities and organized via the internet.
Large models consuming extensive data require increased network bandwidth, posing a significant challenge. Moreover,
large models typically utilize multiple AI accelerators for computation. While Nvidia leverages PCIe to achieve 800GBps
data transmission across chips, decentralized computing nodes connected via the internet face bandwidth limitations of
100GBps or lower, sometimes unreliable. Bandwidth emerges as a critical issue in the era of large models.

2.4 Challenges in Decentralized AI

Achieving a fully Decentralized AI (DeAI) framework entails overcoming a series of intricate challenges:

• Privacy Preservation: Preserving privacy while effectively utilizing data for model training poses a significant
challenge. It necessitates sophisticated techniques to assess data quality and train models without divulging
sensitive data, ensuring that model outputs do not contain privacy-compromising information.

• Incentivization Mechanisms: Encouraging data providers to contribute high-quality data requires the im-
plementation of robust incentivization mechanisms. These mechanisms should adequately compensate data
contributors while also rewarding model trainers and other participants for their valuable contributions.

• Verification of Computation: Establishing trust among participants in the DeAI network demands reliable
mechanisms to verify computations. These mechanisms should ensure that all participants adhere to the agreed-
upon protocols and accurately execute computations, thereby enhancing the overall integrity of the network.

• Network Scalability: Overcoming bandwidth limitations is crucial for enabling the complete implementation of
decentralized computing power, particularly for large-scale models with billions of parameters and the network
with thousands of remote nodes. Addressing scalability challenges involves optimizing network architectures,
improving communication protocols, and leveraging advanced networking technologies.

2.5 Disambiguation

It’s essential to clarify the scope of Decentralized AI (DeAI) within this survey. In this survey, we only focus on
challenges and solutions from decentralized settings for deep learning model training and inference.
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While the term "decentralized AI" is sometimes used to describe multi-agent systems [40, 126], this survey specifically
focuses on the decentralized training and inference processes involving participants contributing data, computing
power, and training scripts.

Furthermore, while many decentralized AI technologies utilize distributed computing techniques, such as data
parallelism and model parallelism[175], distribution alone does not guarantee decentralization. These distribution
techniques typically rely on implicit trust between nodes within a centralized setting. Decentralization, in addition to
distribution, requires the establishment of trust mechanisms to prevent malicious attacks and incentive mechanisms to
foster high-quality engagement and network improvement.

3 PRIVACY PRESERVATION

Privacy serves as a foundational principle in Decentralized AI (DeAI) systems. Data providers identify privacy leakage
as their primary concern, highlighting the need for a trust mechanism to uphold their confidentiality in DeAI. The
privacy preservation becomes more important in the context of handling powerful large models[144]. These models,
while offering increased capacity and capability, can become vulnerable to privacy leaks during inference due to their
very nature.

Large language models demonstrate remarkable memorization capabilities [28] and the capacity to learn from
minimal data samples through techniques such as few-shot prompting[21]. While this adaptability enables them to
deliver impressive outcomes across various tasks, it simultaneously raises concerns regarding potential privacy breaches.
The very nature of these models, with their vast parameter spaces and ability to internalize vast amounts of data, makes
them susceptible to inadvertently disclosing sensitive user information during inference.

Moreover, the decentralized nature of AI exacerbates privacy risks. Traditional centralized models involve data
being stored and processed in a single location, allowing for relatively easier implementation of privacy safeguards. In
contrast, decentralized AI distributes data and computation across multiple nodes, complicating the task of ensuring
privacy protection throughout the system.

Privacy attacks in DeAI systems can be categorized as follows[37, 135] :

• Network data leakage: Unique to DeAI, this leakage occurs when data is transmitted between computing nodes,
posing challenges absent in centralized AI training or federated learning where data is located on computing
power[149].

• Membership inference attack(MIA)[50, 75, 160, 173, 190]: With this attack, adversaries predict if a specific example
is part of the training data based on inference outputs,

• Training data extraction: The superior memorization capability of large models renders them vulnerable to
privacy leakage[76], particularly when personally identifiable information (PII) is included in training data. For
instance, the study[29] extractes training data containing PII such as names, phone numbers, email addresses,
IRC conversations, code snippets, and 128-bit UUIDs from GPT-2 inference[147].

• Gradient leakage[54, 207]: Despite computation occurring on devices with data in federated learning, privacy can
still be compromised as local training data can be reconstructed from gradients [118, 183]. TAG[41] demonstrates
the capability to reconstruct 88.9% tokens of private training data from gradient.

• Attribute inference attack: This attack infers personal attributes from text given at inference time. GPT-4 achieved
84% accuracy to predict users’ personal attributes from their public posts in reddit[161]

In DeAI model training, data privacy preservation can be addressed in three stages:
Manuscript submitted to ACM
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• Data Preprocess: Techniques such as data filtering, noise introduction, anonymization, and data aggregation
mitigate privacy risks locally before data transmission [184].

• Computation framework: Privacy preservation can be ingrained within the design of the computation framework.
Federated Learning[90], for example, aggregates user private data to train models while ensuring protection by
locally computing gradients without revealing user data. Additionally, cryptographic computation methods like
Multi-party computation (MPC) [61] , Homomorphic Encryption (HE) [56] , and Trusted Execution Environment
(TEE) [152] play a pivotal role in safeguarding user data privacy without divulging them to the computing nodes.

• Model training: Techniques like adversarial regularization[134], differential privacy [57], dropout, model stacking,
and random deletion of neural connections[153] enhance privacy during model training.

3.1 Data Process

Data processing stands as a natural and effective strategy to mitigate privacy leakage during the preparation of
pretraining corpora and finetuning instruction datasets. This process involves masking or filtering personally identifiable
information (PII) and other sensitive data. However, such measures can inadvertently reduce diversity and lead to
information loss, potentially weakening the capabilities of Large Language Models (LLMs) [185].

Moreover, while data anonymization techniques like k-anonymity[164], l-diversity [121], and t-closeness[104] can
be employed to eliminate privacy information from data, they may not fully protect against membership inference
attacks, as signatures other than PII may still identify data providers.

Additionally, deduplication[97] , although a simple and effective method, can improve model quality while mitigating
privacy risks[85] associated with training data extraction and membership inference attacks .

3.2 Privacy Preserved Training

Various techniques applied in model training can also improve privacy preservation.

3.2.1 Differential privacy. Differential privacy[45], defined as ensuring that adjacent data cannot be distinguished, offers
privacy protection through an information-theoretic guarantee[30]. In practice, differential privacy is implemented by
adding noise to data[32], gradients[1], output[68], or objective functions[30]. However, while differential privacy is
crucial for preserving privacy, it may blur long-tail examples in data distributions, resulting in reduced accuracy[82,
171], particularly for underrepresented groups[10, 48]. Despite its potential negative impact on pretrained model
performance[8], differential privacy in fine-tune tasks can maintain model utility[108, 197].

3.2.2 Privacy Regularization. Privacy regularization [127] introduces penalties for generating privacy-sensitive infor-
mation. For instance, PPLM[188] introduces instruction tuning with Direct Preference Optimization (DPO)[148] to
reward generations that distinguish between publicly shareable and privacy-sensitive information.

3.3 Federated Learning

Federated Learning[90, 125] is a distributed machine learning paradigm that aggregates model gradients from decen-
tralized data sources. In this paradigm, data providers compute gradients locally with a global model and local data,
which are then shared with a coordinator. The coordinator manages the training process by distributing tasks to data
providers and iteratively updating the model.

While traditionally the coordinator in federated learning is a centralized server, there are emerging studies exploring
decentralized paradigms of serverless federated learning[93, 110, 120, 151].
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While federated learning stands as one of the most practical paradigms for preserving privacy in machine learning,
it encounters several challenges[107, 207]:

• Expensive Communication: The iterative communication between devices and the server for model updates
significantly increases communication costs, especially for large models.

• Systems Heterogeneity: Devices exhibit vast differences in storage capacity, computational power, communication
bandwidth, and availability. With millions of devices in the network, this heterogeneity leads to high levels of
unreliability.

• Statistical Heterogeneity: Data volume, quality, and distribution vary widely across different devices, presenting
challenges in achieving consistent model performance.

• Efficiency: Compared to centralized model training, federated learning entails additional costs due to communi-
cation overhead and device unavailability, resulting in longer training times.

• Privacy Concern: Despite federated learning’s emphasis on privacy preservation, there are instances of privacy
issues arising from gradient leakage, which remain a concern

3.4 Cryptographic Computation

3.4.1 Homomorphic Encryption. Homomorphic encryption (HE) enables arithmetic computation directly on ciphertext[2].
Data providers encrypt the input using a private key, and the results of computation remain encrypted. Fully homomor-
phic encryption (FHE) allows arbitrary operations on ciphertext but is less efficient[56]. By leveraging homomorphic
encryption, neural networks can compute on encrypted data to protect data privacy [145]. However, homomorphic
encryption requires a polynomial representation, whereas neural networks utilize non-linear layers for activation.
Some methods approximate non-linear layers with polynomials[38, 59]. Nonetheless, the capability of neural networks
relies on non-polynomial activations [99], leading to reduced accuracy in encrypted models. Moreover, homomorphic
encryption introduces extraordinary latency increases [22, 117]., and to date, there’s limited work utilizing homomorphic
encryption on large models or evaluating it on large datasets.

3.4.2 Multi-Party Computation. Multi-Party Computation(MPC) enables multiple parties to collaborate on computa-
tions without disclosing their data to each other[195]. Based on MPC protocols, multiple servers can jointly train a model
by secret sharing [6, 89, 129, 130, 150, 178]. However, this approach incurs high computational and communication
overhead, especially for large models, which require significantly more computation and communication resources.
Moreover, MPC protocols necessitate simultaneous coordination of all parties, which may contradict the decentralized
nature of environments where parties are unreliable.

3.4.3 Trusted Execution Environment. Trusted Execution Environment (TEE) creates an isolated environment ensur-
ing code authentication, runtime state integrity, and data confidentiality. Intel SGX is one of the most studied TEE
solutions[36, 124], providing a trusted hardware mechanism to create protected containers called enclaves. However,
current TEE solutions have limitations for deep learning models, including significant overhead for memory-intensive
tasks, limited memory capacity (e.g., 128MB default in Intel SGX), and support for limited CPU instructions without GPU
leverage. Efforts have been made to offload computationally intensive layers of deep learning models to the GPU while
maintaining integrity and confidentiality within an enclave[170]. Despite these efforts, complicated implementations
have led to discovered attacks to TEE [137].
Manuscript submitted to ACM
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Table 2. Privacy Preservation Methods

Method Model Performance Efficiency Network Requirement Risk
DP Lower Similar Low
FL Similar Slightly slower High Gradient leakage
FHE Much lower Much slower Low MIA
TEE Same Much slower Low MIA
MPC Same Much slower Very high MIA

3.5 Challenges of Privacy Preservation Methods

Each privacy preservation approach has its drawbacks. Cryptographic methods guarantee a high level of privacy but suf-
fer from significant efficiency drawbacks and may not defend against membership inference attacks. Differential privacy
and adversarial regularization mitigate privacy attacks to some degree without introducing additional computation costs
but may impact model performance. These challenges are often mutually incompatible[192]. Furthermore, the strengths
of these techniques can also be double-edged; cryptographic approaches prevent data leakage in communication but
also hinder data auditing, potentially facilitating backdoor attacks and data poisoning. To mitigate these challenges,
multiple techniques are often used together, with federated learning serving as a backbone to integrate with other
techniques such as differential privacy, MPC[53, 172], and cryptographic methods[67, 128, 191]. Some studies introduce
trusted third parties to address efficiency challenges.

4 SECURITY

Malicious actors within DeAI environments pose significant privacy and security concerns. While malicious computing
nodes and training tasks can leak the privacy of data providers, malicious data providers may compromise the security
of DeAI models [60]. Attacks targeting models and federated learning can both impact DeAI systems by reducing model
quality or inducing models to output desired contents.

DeAI involves permissionless participants in the network, making it vulnerable to network attacks[119]. Common
attack means from the perspective of network participants include:

• Byzantine attack: Malicious agents upload arbitrary updates to degrade training performance [47, 94].
• Sybil attack[43]: Attackers create multiple dummy participant accounts to gain larger influence.

In DeAI, attackers often focus on the model during its training or inference phases, aiming for either targeted or
untargeted poisoning. Targeted poisoning involves attackers manipulating the model to produce desired outputs of
their choosing. On the other hand, untargeted poisoning seeks to disrupt the convergence of the global model, diminish
its accuracy, or even cause it to diverge from its intended behavior. Data poisoning and model poisoning are common
methods employed by attackers to achieve these objectives.

4.1 Data Poisoning

Data poisoning involves introducing malicious data to manipulate model outputs towards the attacker’s intention. It’s
effective in both general machine learning [143] and federated learning[168]. In DeAI environments, where data is
provided by individuals, it’s particularly vulnerable to such attacks.
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For classification models, a prevalent technique in data poisoning is label-flipping[139], wherein honest training
examples are systematically switched from one class label to another. Consequently, the affected model erroneously
predicts these examples to the corresponding altered labels.

To defend data poisoning, several defense strategies have been proposed. Reject on Negative Impact (RONI) [14] mea-
sures the impact of each training example on the error rate, and remove those with large nagatvie impact. Additionally,
loss functions [81] can be leveraged to detect and mitigate the influence of malicious data.

Data sanitization techniques offer another avenue for early identification of malicious data. Methods such as BERT
embedding [179], activations analysis[31] and provenance information analysis [13] can aid in this detection process.

4.2 Model Poisoning

Model poisoning[156] manipulates the global model by injecting malicious updates. It’s a type of backdoor attack that
maintains model performance on evaluated tasks but is controlled by attackers on backdoor tasks. Federated learning is
vulnerable to model poisoning attacks[11], due to the decentralized nature of its participants, wherein any participant
can update their model with injected malicious behavior

To address these risks, various defense methods have been proposed, primarily focusing on Byzantine robust
aggregation techniques[158]:

• Distance based methods: These techniques distinguish outliers based on their distance from other agents
[18, 26, 51].

• Performance based methods:These approaches evaluate updates and lower the weight of poorly performed
updates [27, 105, 189].

• Statistics based methods:Utilizing the statistics of updates to identify outliers is another strategy employed to
mitigate model poisoning attacks [142, 196].

These defense mechanisms aim to enhance the resilience of federated learning systems against model poisoning
attacks by effectively identifying and mitigating the impact of malicious updates.

4.3 Sybil Attack

Sybil attacks[43], a type of network attack, involve creating numerous fake identities to gain influence over the network.
In DeAI scenarios, sybil attacks can result in a larger proportion of malicious nodes during model training, increasing
the likelihood of successful data or model poisoning.

One effective mitigation strategy involves identifying attacks through the diversity of updates[51]. This approach
relies on the observation that targeted attacks often generate similar gradients with less diversity, enabling the detection
of anomalous behavior indicative of Sybil attacks.

Moreover, other defense mechanisms against Sybil attacks in network scenarios [100] prove effective in the context
of DeAI:

• Trusted certification[4]: Centralized authorities ensure that each entity possesses a certificate for network
participation, thereby mitigating the proliferation of fake identities.

• Resource testing[9]: Nodes undergo testing to assess their computing capability and network bandwidth, facili-
tating the detection of anomalies suggestive of Sybil attacks.

• Economic costs and fees[123]: Introducing fees for participation discourages Sybil attacks by rendering them
economically unviable, thereby enhancing the security of the network.
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4.4 Impact of Large Models

The extraordinary capabilities of Large Language Models (LLMs) render them even more susceptible to the aforemen-
tioned attacks [37]. Owing to their enhanced capacity, identifying malicious data becomes more challenging since
the model’s performance on evaluated tasks remains largely unaffected, even after the introduction of malicious data.
Consequently, backdoor attacks [24, 84, 102, 136, 157, 193, 205], particularly data poisoning attacks[5, 92, 180, 203],
become significantly easier to execute, allowing malicious actors to manipulate LLMs into generating desired outputs
with specific triggers.

The success of backdoor attacks implies that the model possesses spare learning capacity[65]. In addition to the
defense techniques mentioned earlier, LLMs can utilize fine-tuning[154] to overwrite neurons tuned for backdoor inputs
or prune these neurons[113] to effectively mitigate the impact of backdoor attacks.

4.5 Responsibility

In addition to the previously mentioned vulnerabilities, LLMs are susceptible to a range of other challenges [83]. These
include phenomena such as hallucination[77], misinformation, and various active attack techniques such as adversarial
attacks[91, 209], prompt injecting[64, 116], and jailbreak attacks[35]. Furthermore, other generative AI models have
demonstrated the ability to fabricate human faces and voices convincingly, raising concerns regarding their potential
misuse for fraudulent purposes.

Generative AI models are being increasingly utilized to fabricate synthetic videos and voices, fueling the proliferation
of deceptive news, fraudulent schemes, scams, and other criminal pursuits. Unlike traditional centralized settings,
where model training is overseen and regulated by a single entity, DeAI environments lack centralized oversight. This
decentralized nature renders models susceptible to exploitation by malicious actors who may seek to manipulate or
misuse them for illicit purposes. This underscores the critical importance of implementing robust security measures
and oversight mechanisms to mitigate the risks associated with the misuse of generative AI in DeAI environments.

5 INCENTIVE MECHANISM

Incentive mechanisms play a pivotal role in DeAI systems, not only in rewarding participants for superior performance
but also in rendering attacks economically unviable. Effective incentive mechanisms has been extensively discussed in
various decentralized contexts such as decentralized markets[131], peer-to-peer networks[80], computation resource
management[44] and crowdsensing platforms[63]. Furthermore, the decentralized nature of DeAI allows for the design
of specific incentive mechanisms tailored to particular use cases.

The incentive mechanisms in DeAI are primarily aimed at addressing two major challenges:

• Motivate and maintain participants for their high performance.
• Evaluate participants’ contributions accurately and fairly.

• Problem Formulation: It involves determining how to formulate the incentive problem, whether as a game theory
model, auction model, or other relevant models.

• Contribution Evaluation: In a permissionless decentralized network, assessing the contribution of all nodes
is crucial, especially considering the presence of potentially malicious nodes. Various strategies need to be
employed to evaluate contributions accurately while mitigating the influence of malicious actors.
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5.1 Problem Formulation

The foundation of designing a fair and effective incentive mechanism lies in formulating the incentive problem using
appropriate theoretical frameworks such as game theory models, auction models, or other relevant models[174].

One prominent theoretical framework utilized in Federated Learning is the Stackelberg game[162]. In Federated
Learning with Stackelberg game, the task requester assumes the role of the leader, while the clients act as followers[87,
202]. Here, the leader announces a strategy aimed at maximizing model performance, while clients base their actions
on the leader’s strategy, focusing on maximizing their resource utility to receive rewards.

Another approach, Federated Learning using auction theory, treats the task requester as an auctioneer and the clients
as bidders [95, 199]. In this setup, the task requester initiates a task, and clients submit bids along with their computing
costs and available resources. The task requester then determines the winner, assigns the task, and rewards the selected
client. Some approaches[42, 198] uses auction theory to help aggregators calculate the optimal set of clients to maximize
model performance within a limited budget.

In addition to game theory and auction theory, alternative approaches exist for formulating incentive mechanisms.
For instance, incentive mechanism can be formulated as a social welfare maximization problem [165]. Furthermore,
survey studies highlight additional theoretical frameworks such as contest theory and contract theory[186].

5.2 Contribution Evaluation

In the landscape of DeAI, federated learning stands as a pivotal approach, leveraging data contributions from various
providers to enhance model performance. The efficacy of federated learning hinges on the quality of contributed data.
It is a key component in incentive mechanisms how to evaluate contribution of DeAI participants.

However, the decentralized nature of federated learning introduces vulnerabilities, notably the risk of malicious
actors attempting to exploit the system for undeserved rewards. These attackers may engage in various fraudulent
activities, such as submitting fake, redundant, or low-quality data to inflate their rewards.

To mitigate such risks and ensure the integrity of the federated learning process, researchers have proposed diverse
methods to evaluate the quality of contribution. Data Shapley[58] is an equitable data valuation metric that quantifies
the the contribution of individual data points to a learning task. Metrics such as training loss reduction and accuracy
enhancement serve as pivotal benchmarks in evaluating the efficacy of participants’ contributions within incentive
mechanisms[42, 69]. These mechanisms not only incentivize data providers to offer high-quality data but also safeguard
against fraudulent behavior.

5.3 Copyright

Data providers within the DeAI paradigm may have concerns regarding the unauthorized utilization or potential
plagiarism of their data by model trainers or other data contributors.

While ensuring privacy preservation necessitates defenses against membership inference and backdoor attacks, data
providers are also interested in methods to detect if their data has been utilized in model training, particularly through
the detection of specific triggers.

Data watermarking emerges as a prevalent technique applicable to various deep learning frameworks, including
federated learning[167, 194] and LLMs[88, 140, 155]. Among these techniques, intentional backdoor insertion stands
out as a practical approach for data copyright detection, involving the introduction of noise or specific text as triggers,
subsequently verifying the output embeddings for data ownership validation.
Manuscript submitted to ACM



A Review on Decentralized Artificial Intelligence in the Era of Large Models 13

6 VERIFICATION OF COMPUTATION

In the decentralized infrastructure of DeAI, computing resources often come from untrusted third parties. Consequently,
the verification of computations becomes imperative to ensure the integrity of the process, safeguarding against
instances where remote computing nodes might produce erroneous or even deliberately falsified results. Failure to
verify computations not only risks rewarding malicious nodes undeservedly but also poses threats to the integrity of
the entire model training process, including vulnerabilities to sybil attacks and poisoning attacks.

While some studies have delved into the realm of verifiable computing[55, 200], these investigations may not
encompass the latest advancements following the emergence of blockchain technology and cryptographic techniques.
Incorporating insights from these domains could yield novel solutions capable of addressing the evolving challenges
within decentralized AI ecosystems, ensuring the robustness and trustworthiness of computations conducted by remote
nodes.

6.1 Computation on Smart Contract

Ethereum[187] offers smart contract functionality that is theoretically proven to be Turing complete. This has sparked
interest in leveraging smart contracts for AI computations[106]. However, the practicality of utilizing smart contracts
for AI computations is limited by the substantial gas costs associated with such operations, rendering them impractical
for handling large models.

6.2 Zero-Knowledge Proof

Zero-Knowledge Proof (ZKP)[62] is a cryptographic technique enabling a prover to convince a verifier of a statement’s
truth without revealing any additional information beyond the validity of the statement itself.

One prominent instantiation of ZKP is zk-SNARKs (Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge)[17], which has been applied in machine learning domains [52, 204]. This novel paradigm facilitates
the verification of AI computations, particularly in deep learning model inference scenarios [49, 86, 98], enabling
computation offloading to untrusted devices while ensuring the integrity of the process.

However, in ZKP solutions, the translation of functions into arithmetic circuits entails high costs for proof generation.
These costs can be as much as 1000 times greater than native computations, rendering ZKP solutions impractical for
handling large models.

6.3 Blockchain Audit

Before the emergence of blockchain technology, early explorationswere undertaken to construct audit-based solutions[16].
These solutions relied on trusted clients to recompute sampled tasks performed by untrusted workers, employing
incentive mechanisms to reward honest work and penalize cheating.

The advent of blockchain technology, notably underlying Bitcoin[132], brought about revolutionary features such as
immutability and traceability in decentralized data storage.

In the realm of federated learning, blockchain has been harnessed to ensure data provenance and maintain auditable
blocks [12, 33, 110, 146]. This integration ensures the verification of learning processes, enabling validators to scrutinize
results. Additionally, the incentive mechanisms inherent in blockchain ecosystems incentivize nodes to contribute
high-quality data and services to decentralized systems.
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6.4 Consensus Protocol

Consensus protocols utilize smart contracts to orchestrate verification workflows while distributing AI computations
across decentralized devices. Crynux H-net[72] establishes a permissionless and serverless DeAI network, and verifies
computation results by cross-validating with other nodes executing the same task. This approach involves two key
steps:

(1) Nodes upload commitments, derived from hashed signatures of results using local private seeds, onto the
blockchain.

(2) Following the submission of commitments by all nodes, they can then submit their results to the blockchain for
verification by smart contracts.

This consensus protocol effectively circumvents collusion among nodes, eschews reliance on trusted validators, and
avoids additional computation complexity, rendering it well-suited for handling large models in DeAI settings.

In addition to the aforementioned methods, Trusted Execution Environment (TEE) presents another avenue for
verifying computations by executing authorized code within isolated environments [170].

7 NETWORK COMMUNICATION

DeAI leverages the internet infrastructure for facilitating communication among diverse parties. This communication
framework is fundamental for Federated Learning (FL) and Multi-party Computation (MPC) within the DeAI paradigm.
Both FL and MPC heavily rely on communication protocols that facilitate multiple rounds of interaction among
participating nodes.

7.1 Optimizing Computation Protocol

Efficient network communication is critical for the success of FL and MPC protocols within DeAI settings[107]. However,
the communication overhead associated with transmitting checkpoints and model updates can significantly impact the
overall efficiency. The optimized design of computation protocols minimizes the number of communication rounds
required between nodes, enhances the efficiency and scalability of DeAI systems.

7.1.1 Local updating. Local updating mechanisms emerge as crucial strategies for minimizing communication overhead
between nodes, thereby optimizing network utilization. Local SGD[163] enables independent execution of stochastic
gradient descent on multiple worker nodes in parallel, and achieves the convergence rate comparable to traditional
mini-batch methods[39].

7.1.2 Cryptography. Most secure sharing protocols necessitate multi-round peer-to-peer communication, posing chal-
lenges particularly when dealing with models containing billions of parameters, where completing such communication
in a reasonable timeframe becomes impractical.

To address this issue, optimization on protocols are essential, notably focusing on garbled-circuites MPC protocols[15,
122]. A key optimization strategy involves the design of compilers tailored to generate fewer garbled-circuit gates,
thereby reducing the size of data transmissions and alleviating the burden on network communication. However, by far,
there is no practical method applied to large models.

7.1.3 Distribution topology. Many techniques derived from distributed computing are applied in DeAI settings, offering
innovative solutions to various challenges.
Manuscript submitted to ACM



A Review on Decentralized Artificial Intelligence in the Era of Large Models 15

Decentralized training exhibits potential advantages over centralized counterparts, particularly in scenarios charac-
terized by network constraints such as low bandwidth or high latency[111].

Parallelism strategies are pivotal for accelerating model training across multiple GPUs, addressing the computational
challenges inherent in large-scale models.

Data parallelism stands as the most prevalent approach, wherein datasets are partitioned into subsets and distributed
among workers, each equipped with a model replica. Here, each worker processes a mini-batch within its assigned
subset, computing weight updates independently. Communication is essential to synchronize gradients computed
across devices. Parameter servers [103] and AllReduce communication protocols[138] facilitate this synchronization.

As large models nowadays exceed the capacity of a single GPU, model parallelism[159] emerges as a solution,
distributing different parts of the model across multiple GPUs simultaneously.

Pipeline parallelism[78, 133] optimizes computation by breaking it into stages and forming a pipeline, with each
stage executed on a distinct device. This method enhances throughput by enabling parallel processing of micro-batches.

These parallelism strategies relies on GPU interconnect techniques, such as NVLink and PCI-E [101]. These techniques
provide a high-bandwidth communication between GPUs that can be as high as 1000Gbps on a centralized server.
However, the decentralized environment is built on internet with bandwidth of 10-100 Mbps.

Petal [19, 20] allocates different layers of the model to decentralized GPUs on 10-100 Mbps internet for inference and
infetune BLOOM-176B model[96].

Studies are also made to pretrain and fine-tune foundation model on 500Mbps network[182, 201]. They optimize
scheduling based on a communication matrix incorporating bandwidth and latency information between decentralized
nodes. Despite 100x slower communication, their distributed training setups across 64 GPUs in 8 regions globally incur
only a 1.7-3.5x slowdown compared to centralized data centers.

In the federated learning context, hierarchical topology[114] is introduced to optimize communication efficiency of FL.
This topology leverages edge servers to aggregate updates. This approach effectively reduces the overall communication
burden.

7.2 Compression

Model compression[34, 70] reduces the size of models to reduce the size of model, thereby facilitating efficient commu-
nication of model weights or gradients[112].

Quantization emerges as a prominent approach, wherein weights are quantized to lower bit precision[79]. This not
only reduces model size but also enhances computational efficiency. Notable examples include DoReFa-Net[206], which
employs 1-bit weights with 2-bit gradients .

Sparsification techniques focus on pruning weights with negligible impact on model performance, thereby reducing
model capacity without significant loss in accuracy[208]. In distributed training scenarios, only gradients surpassing a
threshold are communicated, leading to 99% savings in gradient exchange[7].

Federated Dropout[25] trains and updates smaller subnets of the model, thereby reducing both local computation
costs and communication payloads in federated learning.

Furthermore, factorization techniques offer a means to decompose weight matrices into low-rank representations,
thereby reducing the bandwidth required for communication[181].

These diverse strategies collectively contribute to optimizing model communication in decentralized settings.
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7.3 Parameter Efficient Fine Tuning

Within the landscape of large-scale models, conventional compression techniques may prove insufficient to address
the challenges posed by their large size. In this context, Parameter Efficient Fine Tuning (PEFT) emerges as a more
aggressive strategy aimed at reducing the number of trainable weights, thereby mitigating communication overhead.

PEFT adjusts only a small proportion of model parameters, resulting in a significant reduction in computational
complexity. This reduction in the number of trainable weights translates to a decrease in communication payload,
particularly beneficial in Decentralized AI (DeAI) settings.

PEFT can be categorized into several approaches[71]:

• Additive modules modifies the model architecture by injecting an additive trainable modules or layers [73, 141].
• Soft prompts utilize continuous embedding spaces of soft prompts to refine model performance. Notable examples
include Prefix-Tuning, which leverages prefix vectors for inference after fine-tuning [109, 115].

• Selective fine-tuning involves selecting a small subset of parameters, making them tunable while keeping the
remaining weights frozen. Diff Pruning[66, 177] applies parameter pruning techniques to achieve efficiency
gains .

• Reparameterized PEFT employs low-rank parameterization techniques to construct more efficient representations,
which are then transformed back for inference[74].

The emergence of large-scale models has catalyzed the development of diverse techniques aimed at significantly
reducing the computational complexity and communication overhead associated with these models in the realm of
DeAI.

8 CONCLUSION

In this comprehensive review, we establish a systematic definition of Decentralized AI (DeAI) and meticulously examine
the challenges and complexities inherent in achieving complete decentralization. We pioneer an exploration into the
unique challenges posed by the advent of large-scale models, shedding light on their implications for DeAI ecosystems.

Our analysis delves into various critical domains:

• Data Privacy Preservation: We scrutinize the risks and challenges confronting data providers, presenting an list
of techniques spanning privacy learning, federated learning, and cryptography to mitigate privacy concerns
effectively.

• Security Attacks: Through a detailed examination, we dissect the list of potential attacks targeting model training
in DeAI and survey existing solutions to fortify defenses against such threats.

• Incentive Mechanisms: We delve into strategies aimed at incentivizing data providers and computing powers to
sustain high-quality service within the DeAI network, emphasizing the importance of fair evaluation mechanisms.
In addition, we discussed the copyright protection techniques for data providers.

• Verification of Computation: Our analysis encompasses techniques designed to verify computation results from
computing powers, crucial for safeguarding against fraudulent activities such as fake result attacks.

• Network Communication: We explore diverse solutions geared towards enhancing the efficiency of network
communication within decentralized settings, including computation protocol, topology, compression, and
parameter-efficient fine-tuning.

Moreover, we confront the dual nature of features exhibited by large models in DeAI:
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• While large models exhibit extraordinary memorization capabilities, they also raise significant privacy concerns,
particularly regarding the inadvertent memorization of sensitive information.

• Privacy preservation techniques serve as vital safeguards against privacy breaches, yet they may inadvertently
obscure the source of origin and hinder copyright protection efforts.

• Data encryption techniques prevents data leakage during network communication, but they also present chal-
lenges in auditing malicious data from other parties.

Many existing solutions in the DeAI landscape may not be entirely feasible in the context of large models, given
their larger size and enhanced memorization and generalization capabilities. Furthermore, due to the rapid evolution
of this field and the vast scope for exploration, some important works may have been overlooked in this survey. For
instance, the topic of model encryption warrants further investigation.

To stay updated with the latest version of this survey and to explore emerging topics further, we invite readers to
visit our continuously updated repository at https://deai.gitbook.com. We also encourage researchers to collaborate on
this open-source GitBook, contributing insightful information to enrich the content.
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